On the radicals of normed rings in W. I

S. Tumurbat and V. Adiyasuren

The School of Mathematics and Computer Science, National University of Mongolia,e-mail:stumurbat@hotmail.com, v_adiyasuren@yahoo.com

Dedicated to the memory of professor D.Ishtseren

Abstract

For any class \mathcal{M} of rings which are normed in a linearly ordered ring W, we give characterizations and prove some properties of normed radicals and we also give characterizations of the Banach algebras \mathbb{C}^S and $(l^{\infty}(S))$.

In this paper, rings are associative, not necessarily with unity. As usual, $I \triangleleft A$ will denote that I is an ideal in a ring A. We recall that a universal class \mathcal{M} satisfies the following conditions:

- (i) \mathcal{M} is closed under homomorphisms;
- (ii) \mathcal{M} is hereditary (that is, $I \triangleleft A \in \mathcal{M}$ implies $I \in \mathcal{M}$).

Let us also recall that a (*Kurosh-Amitsur*) radical γ in a universal class \mathcal{M} of rings is a class of rings in \mathcal{M} which is closed under homomorphisms, extensions (that is, $I \in \gamma$ and $A/I \in \gamma$ imply $A \in \gamma$), and has the inductive property (that is, if $I_1 \subseteq ... \subseteq I_\lambda \subseteq ...$ is a chain of ideals of a ring $A \in \mathcal{M}$ and each $I_\lambda \in \gamma$, then $\cup I_\lambda \in \gamma$).

AMS Mathematics subject classification (2000) 16 N80.

Every ring $A \in \mathcal{M}$ contains a unique largest γ -ideal (that is, an ideal which is in γ), denoted by $\gamma_{\mathcal{M}}(A)$, which is called the $\gamma_{\mathcal{M}}$ -radical of A. If $\gamma_{\mathcal{M}}$ is a radical, the

class

$$S(\gamma_{\mathcal{M}}) = \{A : \gamma_{\mathcal{M}}(A) = 0\}$$

is called the semisimple class of $\gamma_{\mathcal{M}}$. A class $\mathcal{M}_0 \subseteq \mathcal{M}$ of rings is said to be *regular* if every nonzero ideal of a ring in \mathcal{M} has a non-zero homomorphic image in \mathcal{M}_0 . Starting from a regular (in particular, hereditary) class $\mathcal{M}_0 \subseteq \mathcal{M}$, the *upper radical operator* $U_{\mathcal{M}}$ yields a radical class:

 $\mathcal{U}_{\mathcal{M}}(\mathcal{M}_0) = \{A \in \mathcal{M} : A \text{ has no non-zero homomorphic image in } M_0\}.$

The fundamental properties of radicals can be found in ([1], [2], [3], [4]).

In what follows, let W be a linearly ordered ring.

Definition 1. Let A be a ring. A norm on A is a map $\|\cdot\| : A \longrightarrow W$ such that, for each $x, y \in A$,

- (i) $||x|| \ge 0$; ||x|| = 0 if and only if x = 0,
- (*ii*) $||x + y|| \le ||x|| + ||y||,$
- (*iii*) $||xy|| \le ||x|| ||y||$.

A ring which satisfies the conditions (i)-(iii) for some norm in W, is said to be normed in W.

The class of all rings that are normed in W shall be denoted by C_W .

We shall start by presenting some elementary examples.

Examples.

(i) For any non-empty set S, let \mathbb{C}^S be the set of functions from S into \mathbb{C} where \mathbb{C} is the set of complex numbers. Define pointwise algebraic operations by

$$(\alpha f + \beta g)(s) = \alpha f(s) + \beta g(s)$$
$$(fg)(s) = f(s)g(s)$$
$$1(s) = 1$$

for each $s \in S$, each $f, g \in \mathbb{C}^s$ and each $\alpha, \beta \in \mathbb{C}$. Then C^s is a commutative unital algebra. If we write $l^{\infty}(S)$ for the subset of bounded functions on S and define the uniform norm $|\cdot|_S$ on S by

$$|f|_S = \sup\{|f(s)| : s \in S\}$$

for any $f \in l^{\infty}(S)$, then $(l^{\infty}(S), |\cdot|_S)$ is a unital Banach algebra.

(ii) Let X be a topological space (for example, think of $X = \mathbb{R}$). If we write C(X) for the algebra of continuous function on X, and $C^b(X)$ for the algebra of bounded continuous functions on X, then $(C^b(X), |\cdot|_X)$ is a unital Banach algebra. Now if we take Ω to be a compact space (for example, $\Omega = [0, 1]$), then we have $C^b(\Omega) = C(\Omega)$ and so $(C(\Omega), |\cdot|_{\Omega})$ is a unital Banach algebra.

(iii) Let $D=\{z\in\mathbb{C}:|z|<1\}$ be the open disc. The disc algebra

$$A(\overline{\mathbb{D}}) = \{ f \in C(\overline{\mathbb{D}}) : f \text{ is analytic on } \mathbb{D} \}$$

is a unital Banach algebra.

(iv) For linear spaces E and F, the collection $\Im(E, F)$ of all linear maps from Eto F is itself a linear space for the standard operations. Now let E and F be Banach spaces. Then the family B(E, F) of all bounded (that is, continuous) linear operators from E to F is a subspace of $\Im(E, F)$ and B(E, F) is itself a Banach space for the operator norm given by

$$||T|| = \sup\{||T(x)|| : x \in E, ||x|| \le 1\}.$$

we write L(E) and B(E) for L(E, E), B(E, E), respectively. The product of two operators S and T in L(E) is given by composition:

$$(ST)(x) = (S \circ T)(x) = S(T(x))$$

for any $x \in E$. Trivially, $||ST|| \leq ||S|| ||T||$ for any $S, T \in B(E)$ and $(B(E), ||\cdot||)$ is a unital Banach algebra. The unity of B(E) is the identity operator I_E . This is a non-commutative example. Indeed, if E is the finite-dimensional space \mathbb{C}^n (say with the Euclidean norm $\|\cdot\|_2$), then L(E) = B(E) is just the algebra $M_n(\mathbb{C})$ of all $n \times n$ matrices over \mathbb{C} (with the usual identifications).

(v) If W has a unity, then any ring A is normed in W. In fact if $0 \neq a \in A$, then ||a|| = 1. If a = 0, then ||a|| = 0. This called the trivial norm.

Proposition 1. C_W is a universal class.

Proof. Clearly, C_W is hereditary.

First we will define a norm on A if $A \cong B$ and B is normed in W. Since A and B are isomorphic, there exists an isomorphism $f : A \to B$ and so we may define, for any $a \in A$, $||a|| \stackrel{def}{=} ||f(a)||$, which shows that A is normed in W.

Let \overline{A} be a homomorphic image of $A \in C_W$. Then we have that $\overline{A} \cong A/I$, where $I = ker \ f = \{a \in A : f(a) = 0\}$. Now $A/I \in C_W$ since, for any element $a \in A$, we can define the norm

$$||a + I|| = \begin{cases} ||a|| & \text{if } a \notin I \\ 0 & \text{if } a \in I \end{cases}$$

Therefore, $\overline{A} \in C_W.\square$

We denote by Ass the class of all associative rings and let γ be a radical in Ass. We say that γ is *normed* in W if every ring $A \in \gamma$ is normed in W.

Lemma 2. (Andrunakievitch). If $K \triangleleft I \triangleleft A$ and K_A denotes the ideal of A generated by K, then $(K_A)^3 \subseteq K$.

We denote by $\mathcal{L}(\mathcal{M})$ the lower radical generated by \mathcal{M} , where \mathcal{M} is a class of rings.

Lemma 3. Let A be a simple ring with unity which is normed in W. The lower radical $\mathcal{L}(A)$ in Ass is normed in W.

Proof. Suppose $B \in \mathcal{L}(A)$. Then B has a nonzero accessible subring A_1 such that

$$B = I_n \triangleright I_{n-1} \triangleright ... \triangleright I_1 and I_1 \cong A.$$

Since A has a unity, $A^2 = A$. Therefore I_1 has a unity and $I_1^2 = I_1$. By Lemma 2, $I_1 \triangleleft I_3$ and so $I_1 \triangleleft B$. Thus we can show that $B = A_1 \oplus B_1$, where $A_1 \cong A$. Therefore $B_1 \in \mathcal{L}(A)$. Repeating the procedure, we obtain $B = A_1 \oplus A_2 \oplus ... \oplus A_n \oplus ...$ where $A \cong A_1 \cong A_2 \cong A_n \cong ...$. Hence, for $a \in B$, we can write $a = \sum_{j=1}^m c_{i_j} \ (c_{i_j} \in A_{i_j})$. Now we can define a norm on B by $||a|| \stackrel{def}{=} \sum_{j=1}^n ||c_{i_j}||$, because all A_i are normed by Proposition 1. Since B is a direct sum of the A_i , a = 0 if and only if $c_{i_j} = 0$. Then, clearly, for any $a \in B$, ||a|| = 0 if and only if a = 0 and

$$||a+b|| \le ||a|| + ||b||$$
 and $||ab|| \le ||a|| ||b||$

for any $a, b \in B$. Thus every ring $B \in \mathcal{L}(A)$ is normed in W. \Box

Let V be a universal class of rings containing \mathbb{Z}^0 (where \mathbb{Z}^0 is the zero ring over the additive group of integers \mathbb{Z}), U a universal subclass of V and γ a radical in U.

We denote by $l_V(\gamma)$ the lower radical in V generated by γ (see [5]).

Lemma 4. $\gamma = l_V(\gamma) \cap U$.

Proof. Clearly, $\gamma \subseteq l_V(\gamma) \cap U$. To complete the proof, let $S\gamma$ be the semisimple class of γ in V. If $S\gamma = 0$, then $\gamma = U$ and $\gamma \supseteq l_V(\gamma) \cap U$. If $S\gamma \neq 0$, then $S\gamma$ is a regular class in U and so the upper class $\mathcal{U}_V(S\gamma)$ in U is a radical class. Thus we have

$$l_V(\gamma) \cap U \subseteq l_V(\gamma) \subseteq \mathcal{U}_V(S\gamma).$$

Suppose that $l_V(\gamma) \cap U \not\subseteq \gamma$. Then there exists a nonzero ring $A \in l_V(\gamma) \cap U$ such that $A \not\in \gamma$. Hence we have a nonzero homomorphic image \overline{A} of A such that $\overline{A} \in S\gamma$. But, by above, $\overline{A} \in \mathcal{U}_V(S\gamma)$ and so $\overline{A} \in \mathcal{U}_V(S\gamma) \cap S\gamma$; a contradiction. So we must have $l_V(\gamma) \cap U \subseteq \gamma$. \Box **Lemma 5.** Let U be a universal subclass of a universal class V and let γ be a radical in V. Then $\gamma \cap U$ is a radical in U.

Proof. Since U and γ are homomorphically closed, $\gamma \cap U$ is homomorphically closed. Let I and A/I be in $\gamma \cap U$ and $A \in U$. Since γ is a radical class, $A \in \gamma$. Thus we have $A \in \gamma \cap U$. Let $I_1 \subseteq ... \subseteq I_\lambda \subseteq ...$ be a chain of ideals of the ring $A \in U$ such that each I_λ is in γ . Then it is easy to see that $A \in \gamma \cap U$. \Box

Theorem 6. Let γ be a radical class in Ass. Then $\gamma \cap C_W = l_{Ass}(\gamma \cap C_W) \cap C_W$. **Proof.** By Lemma 5, $\gamma \cap C_W$ is a radical class in C_W . Hence, using Lemma 4, we get $\gamma \cap C_W = l_{Ass}(\gamma \cap C_W) \cap C_W$. \Box

Now, we consider a linearly ordered ring W without nonzero nilpotent elements. We denote by HC_W the class of all rings in C_W such that every nonzero ideal I of $A \in C_W$ has a nonzero element x such that $||x^n|| = ||x||^n$, for any natural n.

Theorem 7. Let \mathcal{N} be Koëthe's nil radical in Ass. Then

$$\mathcal{U}_{C_W}(HC_W) \supseteq l_{Ass}(\mathcal{U}_{C_W}(HC_W)) \cap C_W = \mathcal{N} \cap C_W.$$

Proof. We need to prove that $\mathcal{U}_{C_W}(HC_W) \supseteq \mathcal{N} \cap C_W$. Let $A \in \mathcal{N} \cap C_W$ and suppose $A \notin \mathcal{U}_{C_W}(HC_W)$. Then A has a nonzero homomorphic image \overline{A} such that $\overline{A} \in HC_W$. By the definition of HC_W , for any nonzero $I \triangleleft \overline{A}$, I has a nonzero element x such that $||x^n|| = ||x||^n$, for all $n \in \mathbb{N}$; thus ||x|| > 0 for any $n \in \mathbb{N}$. Since A is a nil ring, \overline{A} is a nil ring and for some natural number $m, x^m = 0$. But $0 = ||x^m|| = ||x||^m \neq 0$; a contradiction. Thus we have $\mathcal{N} \cap C_W \subseteq U_{C_W}(HC_W)$. The proof is complete, by Theorem 6. \Box

Theorem 8. Let W be a linearly ordered ring, without nonzero nilpotent elements and with unity. Then $\mathcal{U}_{C_W}(HC_W) = \mathcal{N}$. **Proof.** We claim that $\mathcal{N} \subseteq \mathcal{U}_{C_W}(HC_W)$. By Theorem 7, $\mathcal{N} \cap C_W \subseteq \mathcal{U}_{C_W}(HC_W)$. Since W has a unity, by example (v), all rings in Ass are normed in W, for the trivial norm. Hence $C_W = Ass$ and $\mathcal{N} \subseteq C_W$. Thus $\mathcal{N} = \mathcal{N} \cap C_W \subseteq \mathcal{U}_{C_W}(HC_W)$. Finally, $\mathcal{U}_{C_W}(HC_W) \subseteq \mathcal{N}$. In fact, suppose $\mathcal{U}_{C_W}(HC_W) \notin \mathcal{N}$. Then there exist a nonzero ring $A \in \mathcal{U}_{C_W}(HC_W)$ such that $A \notin \mathcal{N}$. Hence we have a nonzero homomorphic image \overline{A} of A, such that $\overline{A} \in S(\mathcal{N})$. Then \overline{A} has no nonzero nil ideals. Let $I \lhd \overline{A}$. Then there exists $0 \neq x \in I$, which is not nilpotent. We consider the trivial norm $\|\cdot\|$, since W has unity. Then, for any natural n,

$$1 = ||x^{n}||,$$
$$||x||^{n} = 1^{n} = 1$$

and so $||x||^n = ||x^n||$. Hence $\overline{A} \in HC_W$ and $\overline{A} \in \mathcal{U}_{C_W}(HC_W) \cap HC_W = 0$; a contradiction. \Box

Let \mathcal{Q} denote the Brown-McCoy radical; that is, the upper radical generated by all simple ring with unity.

Theorem 9. Let U be a universal subclass of Ass. Then $\mathcal{U}_{C_W}(C'_W) = \mathcal{Q} \cap C_W$, where C'_W is the class of all simple rings with unity, in C_W .

Proof. $\mathcal{U}_{C_W}(C'_W) \subseteq \mathcal{Q} \cap C_W$: Let $A \in \mathcal{U}_{C_W}(C'_W)$. Clearly, $A \in C_W$, and it remains to show that $A \in \mathcal{Q}$. If $A \notin \mathcal{Q}$, then A has a nonzero homomorphic image \overline{A} such that \overline{A} is a simple ring with unity. Since $A \in C_W$, by Proposition 1, $\overline{A} \in C_W$, and also $\overline{A} \in C'_W$. Therefore $\overline{A} \in \mathcal{U}_{C_W}(C'_W) \cap C'_W = 0$; a contradiction. We claim that $\mathcal{Q} \cap C_W \subseteq \mathcal{U}_{C_W}(C'_W)$. Let $A \in \mathcal{Q} \cap C_W$ and suppose $A \notin \mathcal{U}_{C_W}(C'_W)$. Since $A \in C_W$, A has a nonzero homomorphic image \overline{A} in C'_W . Thus $\overline{A} \notin \mathcal{Q}$; a contradiction. \Box

We consider the rings \mathbb{C}^S in Example (i), and also the Thierrin radical γ_t in Ass,

which is the upper radical of all fields. Clearly, every ring $A \in S(\gamma_t)$ is a subdirect sum of fields.

Proposition 10. If \mathbb{C}^S is normed in a linearly ordered ring W, then \mathbb{C}^S and $l^{\infty}(S)$ are $\gamma_t \cap C_W$ -semisimple and also suddirect sums of fields normed in W. (For example, \mathbb{C}^S and $l^{\infty}(S)$ are normed rings in \mathbb{R}).

Proof. Let $f \in \mathbb{C}^S$ and put

$$g(x) = \begin{cases} 0, & if \ f(x) \neq 0 \\ 1 & if \ f(x) = 0 \end{cases}$$

Then $g \in \mathbb{C}^S$. Since \mathbb{C}^S is a commutative ring, $f(x)\mathbb{C}^S g(x) = f(x)g(x)\mathbb{C}^S = 0$. Thus \mathbb{C}^S is not a prime ring and hence \mathbb{C}^S is not a simple ring. Now we shall prove that every nonzero ideal I of \mathbb{C}^S has an idempotent. Let $0 \neq f \in I \triangleleft \mathbb{C}^S$. Suppose that

$$g(x) = \begin{cases} \frac{1}{f(x)}, & if \quad f(x) \neq 0\\ 0 & if \quad f(x) = 0 \end{cases}$$

Then

$$e(x) = f(x)g(x) = \begin{cases} 1, & if \ f(x) \neq 0 \\ 0 & if \ f(x) = 0 \end{cases}$$

Since I is an ideal of \mathbb{C}^S , $e \in I$ and $e^2 = (fg)^2 = e$ and thus I has an idempotent element. \mathbb{C}^S is a subdirect sum of subdirectly irreducible rings \mathbb{C}^S/J_i with hearts \overline{I}_i having an idempotent, where $\overline{I}_i = I_i/J_i$ for some $I_i \triangleleft \mathbb{C}^S$. Since \overline{I}_i has an idempotent element, \overline{I}_i is a simple ring. Since simple commutative rings are fields, \overline{I}_i are fields. Thus $\mathbb{C}^S/J_i \equiv \overline{I}_i$. and \mathbb{C}^S is a subdirect sum of fields.

The proof of the case $l^{\infty}(S)$ is similar. \Box

References

 V.A.Andrunakievich, Yu.M.Ryabuhin Radicals of algebra and structure theory, (in russian) Moscow, Nauka, 1979.

- [2] Pivinsky. *Rings and radicals*, Allen and Unwin 1965.
- [3] Szász F.A. Radicals of rings, jour Budapest, Akadémiai kiadó, 1981.
- [4] Gardner B., Wiegandt R. Radical theory of rings Monogr. Textbooks Pure Apple. Math. 261. Marcel. Dekker. New York 2004.
- S.Tumurbut, H.Zand. On small and large radicals. Qnaest, Math, 22(2), 1999, 195-202.