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Abstract

For any class M of rings which are normed in a linearly ordered ring W,
we give characterizations and prove some properties of normed radicals and we
also give characterizations of the Banach algebras C% and (1°°(S)).

In this paper, rings are associative, not necessarily with unity. As usual, I < A will
denote that I is an ideal in a ring A. We recall that a universal class M satisfies the
following conditions:

(i) M is closed under homomorphisms;

(ii) M is hereditary (that is, I < A € M implies I € M).

Let us also recall that a (Kurosh-Amitsur) radical v in a universal class M of rings is
a class of rings in M which is closed under homomorphisms, extensions (that is, I € v and
A/I € ~v imply A € ), and has the inductive property (that is, if [; C ... C Iy C ... is a
chain of ideals of a ring A € M and each I € ~, then UI € 7).

AMS Mathematics subject classification (2000) 16 N80.

Every ring A € M contains a unique largest v-ideal (that is, an ideal which is in

v), denoted by ya((A), which is called the yp-radical of A. If yoq is a radical, the
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class
S(ym) ={A:7m(4) =0}

is called the semisimple class of yoq. A class Mg C M of rings is said to be reqular
if every nonzero ideal of a ring in M has a non-zero homomorphic image in Mj.
Starting from a regular (in particular, hereditary) class My C M, the upper radical

operator Upy yields a radical class:
Unm(Mp) = {A € M : A has no non-zero homomorphic image in My}.

The fundamental properties of radicals can be found in ([1], [2], [3], [4]).

In what follows, let W be a linearly ordered ring.

Definition 1. Let A be a ring. A norm on A is amap || -| : A — W such that,
for each z,y € A,

(i) llz]l > 0; |l =0 if and only if = =0,

(i) Iz + yll < [l + [lyll,

(iir) [lzyll < [l ]| lyll-

A ring which satisfies the conditions (i)-(iii) for some norm in W, is said to be

normed in W.

The class of all rings that are normed in W shall be denoted by Cyy .

We shall start by presenting some elementary examples.

Examples.

(i) For any non-empty set S, let C3 be the set of functions from S into C where

C is the set of complex numbers. Define pointwise algebraic operations by
(af +Bg)(s) = af(s) + Bg(s)

(f9)(s) = f(s)g(s)

1(s) =1
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for each s € S, each f,g € C° and each o, 8 € C. Then C?® is a commutative unital
algebra. If we write 1°°(S) for the subset of bounded functions on S and define the

uniform norm | -|s on S by

|[fls = sup{|f(s)| : s € S}

for any f € 1°°(S), then (I°°(S),]| - |s) is a unital Banach algebra.

(ii) Let X be a topological space (for example, think of X = R). If we write C(X)
for the algebra of continuous function on X, and C®(X) for the algebra of bounded
continuous functions on X, then (C*(X),|-|x) is a unital Banach algebra. Now if we
take Q to be a compact space (for example, Q = [0,1]), then we have C*(2) = C()
and so (C(),]| - |a) is a unital Banach algebra.

(i) Let D ={z € C: |z| <1} be the open disc. The disc algebra

AD) = {f € C(D) : f is analytic on D}

18 a unital Banach algebra.

(iv) For linear spaces E and F', the collection S(E, F) of all linear maps from E
to F is itself a linear space for the standard operations. Now let E and F' be Banach
spaces. Then the family B(E, F) of all bounded (that is, continuous) linear operators
from E to F is a subspace of S(E, F) and B(FE, F) is itself a Banach space for the

operator norm given by
1T = sup{|[T () || : x € E, |[=]| <1}

we write L(E) and B(E) for L(E,E), B(E, E), respectively. The product of two

operators S and T in L(F) is given by composition:
(ST)(x) = (SoT)(x) = S(T ())

for any x € E. Triwially, ||ST|| < ||S|| |T|| for any S, T € B(E) and (B(E),|| )

is a unital Banach algebra. The unity of B(E) is the identity operator Ig. This is
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a non-commutative example. Indeed, if E is the finite-dimensional space C" (say
with the Fuclidean norm || -||2), then L(E) = B(E) is just the algebra M, (C) of all
n X n matrices over C (with the usual identifications).

(v) If W has a unity, then any ring A is normed in W. In fact if 0#a € A,
then |la|| = 1. If a =0, then ||la|| = 0. This called the trivial norm.

Proposition 1. Cy is a universal class.

Proof. Clearly, Cy is hereditary.

First we will define a norm on A if A = B and B is normed in W. Since A and
B are isomorphic, there exists an isomorphism f : A — B and so we may define, for
any a € A, ||al| = || f(a)]|, which shows that A is normed in W.

Let A be a homomorphic image of A € Cyy. Then we have that A = A/I, where
I=ker f={a€ A: f(a) =0}. Now A/I € Cy since, for any element a € A, we

can define the norm
lall if agl
0 ifael

la+ 1| =
Therefore, A € Cy.00

We denote by Ass the class of all associative rings and let v be a radical in Ass.

We say that ~v is normed in W if every ring A € v is normed in W.

Lemma 2. (Andrunakievitch). If K < < A and K4 denotes the ideal of A
generated by K, then (K4)? C K.

We denote by £(M) the lower radical generated by M, where M is a class of

rings.

Lemma 3. Let A be a simple ring with unity which is normed in W. The lower

radical L(A) in Ass is normed in W.
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Proof. Suppose B € L(A). Then B has a nonzero accessible subring A; such
that
B:InDIn_1I>...I>Il and I =~ A.

Since A has a unity, A2 = A. Therefore I; has a unity and I? = I;. By Lemma 2,
Iy <113 and so I; <« B. Thus we can show that B = A1 ® By, where A; =& A. Therefore
B; € L(A). Repeating the procedure, we obtain B = A; ® Ao @ ... & A, @ ... where

m
A=A = A= A, = ... Hence, for a € B, we can write a = ) ¢;; (¢;; € A;;).
j=1
def X
Now we can define a norm on B by [lal| = >_ ||c;;||, because all A; are normed by
j:
Proposition 1. Since B is a direct sum of the A;, a = 0 if and only if ¢;; = 0. Then,

clearly, for any a € B, ||a|]| = 0 if and only if @ = 0 and
la + bl < [lall + [[bl] and [lab]| < lal| [|]
for any a,b € B. Thus every ring B € L(A) is normed in W. O

Let V be a universal class of rings containing Z° (where Z° is the zero ring over
the additive group of integers Z), U a universal subclass of V' and v a radical in U.

We denote by Iy () the lower radical in V' generated by « (see [5]).

Lemma 4. v =Ily(y)NU.

Proof. Clearly, v C ly/(y) N U. To complete the proof, let Sy be the semisimple
class of v in V. If Sy =0, then v = U and v D ly(y) N U. If Sy # 0, then Sv is a
regular class in U and so the upper class Uy (Sv) in U is a radical class. Thus we

have
ly(y) NU Clv(v) €U (S7).

Suppose that Iy (y) N U ¢ +. Then there exists a nonzero ring A € ly(y) N U such
that A € . Hence we have a nonzero homomorphic image A of A such that A € S7.
But, by above, A € Uy (Sv) and so A € Uy (S7v) N Sv; a contradiction. So we must
have Iy (y)NU C~. O
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Lemma 5. Let U be a universal subclass of a universal class V and let v be a
radical in V. Then vyNU is a radical in U.

Proof. Since U and 7 are homomorphically closed, v N U is homomorphically
closed. Let I and A/I be in yNU and A € U. Since 7 is a radical class, A € ~.
Thus we have A € yNU. Let I; C ... C I C ... be a chain of ideals of the ring A € U

such that each I is in 7. Then it is easy to see that A € yNU. O

Theorem 6. Let v be a radical class in Ass. Then v N Cy = lass(y N Cw )NCyy .
Proof. By Lemma 5, v N Cyy is a radical class in Cyy. Hence, using Lemma 4,

we get YN Cw = lass(yNCw) N Cyr. O

Now, we consider a linearly ordered ring W without nonzero nilpotent elements.
We denote by HCy the class of all rings in Cyy such that every nonzero ideal I of

A € Cw has a nonzero element x such that ||z"| = ||z||", for any natural n.
Theorem 7. Let N be Koéthe’s nil radical in Ass. Then

Z/{CW (HCW) 2 lAss(uCW (HCW)) NCw =NNCy.

Proof. We need to prove that Uc,, (HCw) 2 N NCw. Let A € NN Cy and
suppose A & Ucy, (HCw). Then A has a nonzero homomorphic image A such that
A € HCy. By the definition of HCyy, for any nonzero I <t A, I has a nonzero
element x such that ||z"] = ||z||", for all n € N; thus [|z|| > 0 for any n € N.
Since A is a nil ring, A is a nil ring and for some natural number m, ™ = 0. But
0 = ||2™| = ||z||™ # 0; a contradiction. Thus we have NN Cy C Ug,, (HCyw ). The

proof is complete, by Theorem 6. [

Theorem 8. Let W be a linearly ordered ring, without nonzero nilpotent ele-

ments and with unity. Then Ue,, (HCw) = N.
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Proof. We claim that N' C Uc,, (HCyw ). By Theorem 7, NNCw C Uc,, (HCw ).
Since W has a unity, by example (v), all rings in Ass are normed in W, for the trivial
norm. Hence Cy = Ass and N’ C Cy. Thus N = N N Cw C Ue,, (HCw ). Finally,
Ucy, (HCw) C N. In fact, suppose Uy, (HCw) € N. Then there exist a nonzero
ring A € Ue,, (HCw) such that A ¢ N. Hence we have a nonzero homomorphic
image A of A, such that A € S(N). Then A has no nonzero nil ideals. Let I < A.
Then there exists 0 # x € I, which is not nilpotent. We consider the trivial norm

|| - ||, since W has unity. Then, for any natural n,
L= [lz"]],

el =17 = 1

and so ||z||* = [|z"||. Hence A € HCw and A € Uc,, (HCw) N HCy = 0; a

contradiction. [

Let Q denote the Brown-McCoy radical; that is, the upper radical generated by

all simple ring with unity.

Theorem 9. Let U be a universal subclass of Ass. Then Uc,, (Cyy) = QN Cy,
where Cyy, is the class of all simple rings with unity, in Cyy .

Proof. Uc,, (Cy) € QN Cw : Let A € Uey, (CYy). Clearly, A € Cy, and
it remains to show that A € Q. If A ¢ O, then A has a nonzero homomorphic
image A such that A is a simple ring with unity. Since A € Cy, by Proposition 1,
A € Cw, and also A € Cj;,. Therefore A € Ue,, (C}y,) N Cfy; = 0; a contradiction.
We claim that Q N Cw C Uy, (Cfy). Let A € QN Cy and suppose A &€ Ucy, (Ciy/)-
Since A € Cy, A has a nonzero homomorphic image A in Cj,. Thus A ¢ Q; a

contradiction. [

We consider the rings C® in Example (i), and also the Thierrin radical ; in Ass,
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which is the upper radical of all fields. Clearly, every ring A € S(;) is a subdirect

sum of fields.

Proposition 10. If C° is normed in a linearly ordered ring W, then C° and
[°°(S) are v N Cy-semisimple and also suddirect sums of fields normed in W. (For
example, C% and 1°°(S) are normed rings in R).

Proof. Let f € C% and put

0, if fla)#0
1 if f(z)=0

Then g € C®. Since C% is a commutative ring, f(z)C%g(z) = f(z)g(x)CS = 0. Thus

g(z) =

C* is not a prime ring and hence C* is not a simple ring. Now we shall prove that

every nonzero ideal I of C° has an idempotent. Let 0 # f € I <<C%. Suppose that

e if f@) #0

g9(x) = . :
0 if fa) =0
Then
) = flagla) = = D70
0 if f@)=0

Since I is an ideal of C¥, e € I and e = (fg)? = e and thus I has an idempotent
element. C° is a subdirect sum of subdirectly irreducible rings C° /J; with hearts I;
having an idempotent, where I; = I; /J; for some I; <C?S. Since I; has an idempotent
element, I; is a simple ring. Since simple commutative rings are fields, I; are fields.
Thus C°/J; = I;. and C¥ is a subdirect sum of fields.

The proof of the case [°°(S) is similar. [J
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