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Abstract

For any class M of rings which are normed in a linearly ordered ring W ,

we give characterizations and prove some properties of normed radicals and we

also give characterizations of the Banach algebras CS and (l∞(S)).

In this paper, rings are associative, not necessarily with unity. As usual, I C A will

denote that I is an ideal in a ring A. We recall that a universal class M satisfies the

following conditions:

(i) M is closed under homomorphisms;

(ii) M is hereditary (that is, I C A ∈M implies I ∈M).

Let us also recall that a (Kurosh-Amitsur) radical γ in a universal class M of rings is

a class of rings in M which is closed under homomorphisms, extensions (that is, I ∈ γ and

A/I ∈ γ imply A ∈ γ), and has the inductive property (that is, if I1 ⊆ ... ⊆ Iλ ⊆ ... is a

chain of ideals of a ring A ∈M and each Iλ ∈ γ, then ∪Iλ ∈ γ).

AMS Mathematics subject classification (2000) 16 N80.

Every ring A ∈M contains a unique largest γ-ideal (that is, an ideal which is in

γ), denoted by γM(A), which is called the γM-radical of A. If γM is a radical, the
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class

S (γM) = {A : γM(A) = 0}

is called the semisimple class of γM. A class M0 ⊆M of rings is said to be regular

if every nonzero ideal of a ring in M has a non-zero homomorphic image in M0.

Starting from a regular (in particular, hereditary) class M0 ⊆M, the upper radical

operator UM yields a radical class:

UM(M0) = {A ∈M : A has no non-zero homomorphic image in M0}.

The fundamental properties of radicals can be found in ([1], [2], [3], [4]).

In what follows, let W be a linearly ordered ring.

Definition 1. Let A be a ring. A norm on A is a map ‖ · ‖ : A −→ W such that,

for each x, y ∈ A,

(i) ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0,

(ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖,
(iii) ‖xy‖ ≤ ‖x‖ ‖y‖.
A ring which satisfies the conditions (i)-(iii) for some norm in W , is said to be

normed in W.

The class of all rings that are normed in W shall be denoted by CW .

We shall start by presenting some elementary examples.

Examples.

(i) For any non-empty set S, let CS be the set of functions from S into C where

C is the set of complex numbers. Define pointwise algebraic operations by

(αf + βg)(s) = αf(s) + βg(s)

(fg)(s) = f(s)g(s)

1(s) = 1
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for each s ∈ S, each f, g ∈ Cs and each α, β ∈ C. Then Cs is a commutative unital

algebra. If we write l∞(S) for the subset of bounded functions on S and define the

uniform norm | · |S on S by

|f |S = sup{|f(s)| : s ∈ S}

for any f ∈ l∞(S), then (l∞(S), | · |S) is a unital Banach algebra.

(ii) Let X be a topological space (for example, think of X = R). If we write C(X)

for the algebra of continuous function on X, and Cb(X) for the algebra of bounded

continuous functions on X, then (Cb(X), | · |X) is a unital Banach algebra. Now if we

take Ω to be a compact space (for example, Ω = [0, 1]), then we have Cb(Ω) = C(Ω)

and so (C(Ω), | · |Ω) is a unital Banach algebra.

(iii) Let D = {z ∈ C : |z| < 1} be the open disc. The disc algebra

A(D) = {f ∈ C(D) : f is analytic on D}

is a unital Banach algebra.

(iv) For linear spaces E and F , the collection =(E, F ) of all linear maps from E

to F is itself a linear space for the standard operations. Now let E and F be Banach

spaces. Then the family B(E, F ) of all bounded (that is, continuous) linear operators

from E to F is a subspace of =(E, F ) and B(E,F ) is itself a Banach space for the

operator norm given by

‖T‖ = sup{‖T (x) ‖ : x ∈ E, ‖x‖ ≤ 1}.

we write L(E) and B(E) for L(E,E), B(E, E), respectively. The product of two

operators S and T in L(E) is given by composition:

(ST )(x) = (S ◦ T )(x) = S(T (x))

for any x ∈ E. Trivially, ‖ST‖ ≤ ‖S‖ ‖T‖ for any S , T ∈ B(E) and (B(E), ‖ · ‖)
is a unital Banach algebra. The unity of B(E) is the identity operator IE . This is
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a non-commutative example. Indeed, if E is the finite-dimensional space Cn (say

with the Euclidean norm ‖ · ‖2), then L(E) = B(E) is just the algebra Mn(C) of all

n× n matrices over C (with the usual identifications).

(v) If W has a unity, then any ring A is normed in W . In fact if 0 6= a ∈ A,

then ‖a‖ = 1. If a = 0, then ‖a‖ = 0. This called the trivial norm.

Proposition 1. CW is a universal class.

Proof. Clearly, CW is hereditary.

First we will define a norm on A if A ∼= B and B is normed in W . Since A and

B are isomorphic, there exists an isomorphism f : A → B and so we may define, for

any a ∈ A, ‖a‖ def
= ‖f(a)‖, which shows that A is normed in W .

Let A be a homomorphic image of A ∈ CW . Then we have that A ∼= A/I, where

I = ker f = {a ∈ A : f(a) = 0}. Now A/I ∈ CW since, for any element a ∈ A, we

can define the norm

‖a + I‖ =




‖a‖ if a 6∈ I

0 if a ∈ I

Therefore, A ∈ CW .¤

We denote by Ass the class of all associative rings and let γ be a radical in Ass.

We say that γ is normed in W if every ring A ∈ γ is normed in W .

Lemma 2. (Andrunakievitch). If K C I C A and KA denotes the ideal of A

generated by K, then (KA)3 ⊆ K.

We denote by L(M) the lower radical generated by M, where M is a class of

rings.

Lemma 3. Let A be a simple ring with unity which is normed in W. The lower

radical L(A) in Ass is normed in W.
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Proof. Suppose B ∈ L(A). Then B has a nonzero accessible subring A1 such

that

B = In B In−1 B ... B I1 and I1
∼= A.

Since A has a unity, A2 = A. Therefore I1 has a unity and I2
1 = I1. By Lemma 2,

I1CI3 and so I1CB. Thus we can show that B = A1⊕B1, where A1
∼= A. Therefore

B1 ∈ L(A). Repeating the procedure, we obtain B = A1 ⊕A2 ⊕ ...⊕An ⊕ ... where

A ∼= A1
∼= A2

∼= An
∼= ... . Hence, for a ∈ B, we can write a =

m∑
j=1

cij (cij ∈ Aij ).

Now we can define a norm on B by ‖a‖ def
=

n∑
j=1

‖cij‖, because all Ai are normed by

Proposition 1. Since B is a direct sum of the Ai, a = 0 if and only if cij = 0. Then,

clearly, for any a ∈ B, ‖a‖ = 0 if and only if a = 0 and

‖a + b‖ ≤ ‖a‖+ ‖b‖ and ‖ab‖ ≤ ‖a‖ ‖b‖

for any a, b ∈ B. Thus every ring B ∈ L(A) is normed in W . ¤

Let V be a universal class of rings containing Z0 (where Z0 is the zero ring over

the additive group of integers Z), U a universal subclass of V and γ a radical in U .

We denote by lV (γ) the lower radical in V generated by γ (see [5]).

Lemma 4. γ = lV (γ) ∩ U.

Proof. Clearly, γ ⊆ lV (γ) ∩ U. To complete the proof, let Sγ be the semisimple

class of γ in V . If Sγ = 0, then γ = U and γ ⊇ lV (γ) ∩ U. If Sγ 6= 0, then Sγ is a

regular class in U and so the upper class UV (Sγ) in U is a radical class. Thus we

have

lV (γ) ∩ U ⊆ lV (γ) ⊆ UV (Sγ).

Suppose that lV (γ) ∩ U * γ. Then there exists a nonzero ring A ∈ lV (γ) ∩ U such

that A 6∈ γ. Hence we have a nonzero homomorphic image A of A such that A ∈ Sγ.

But, by above, A ∈ UV (Sγ) and so A ∈ UV (Sγ) ∩ Sγ; a contradiction. So we must

have lV (γ) ∩ U ⊆ γ. ¤
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Lemma 5. Let U be a universal subclass of a universal class V and let γ be a

radical in V . Then γ ∩ U is a radical in U .

Proof. Since U and γ are homomorphically closed, γ ∩ U is homomorphically

closed. Let I and A/I be in γ ∩ U and A ∈ U . Since γ is a radical class, A ∈ γ.

Thus we have A ∈ γ∩U. Let I1 ⊆ ... ⊆ Iλ ⊆ ... be a chain of ideals of the ring A ∈ U

such that each Iλ is in γ. Then it is easy to see that A ∈ γ ∩ U. ¤

Theorem 6. Let γ be a radical class in Ass. Then γ ∩ CW = lAss(γ ∩ CW )∩CW .

Proof. By Lemma 5, γ ∩ CW is a radical class in CW . Hence, using Lemma 4,

we get γ ∩ CW = lAss(γ ∩ CW ) ∩ CW . ¤

Now, we consider a linearly ordered ring W without nonzero nilpotent elements.

We denote by HCW the class of all rings in CW such that every nonzero ideal I of

A ∈ CW has a nonzero element x such that ‖xn‖ = ‖x‖n, for any natural n.

Theorem 7. Let N be Koëthe’s nil radical in Ass. Then

UCW
(HCW ) ⊇ lAss(UCW

(HCW )) ∩ CW = N ∩ CW .

Proof. We need to prove that UCW
(HCW ) ⊇ N ∩ CW . Let A ∈ N ∩ CW and

suppose A 6∈ UCW
(HCW ). Then A has a nonzero homomorphic image A such that

A ∈ HCW . By the definition of HCW , for any nonzero I C A, I has a nonzero

element x such that ‖xn‖ = ‖x‖n, for all n ∈ N; thus ‖x‖ > 0 for any n ∈ N.

Since A is a nil ring, A is a nil ring and for some natural number m, xm = 0. But

0 = ‖xm‖ = ‖x‖m 6= 0; a contradiction. Thus we have N ∩CW ⊆ UCW
(HCW ). The

proof is complete, by Theorem 6. ¤

Theorem 8. Let W be a linearly ordered ring, without nonzero nilpotent ele-

ments and with unity. Then UCW
(HCW ) = N .
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Proof. We claim thatN ⊆ UCW
(HCW ). By Theorem 7, N∩CW ⊆ UCW

(HCW ).

Since W has a unity, by example (v), all rings in Ass are normed in W , for the trivial

norm. Hence CW = Ass and N ⊆ CW . Thus N = N ∩ CW ⊆ UCW
(HCW ). Finally,

UCW
(HCW ) ⊆ N . In fact, suppose UCW

(HCW ) * N . Then there exist a nonzero

ring A ∈ UCW
(HCW ) such that A 6∈ N . Hence we have a nonzero homomorphic

image A of A, such that A ∈ S(N ). Then A has no nonzero nil ideals. Let I C A.

Then there exists 0 6= x ∈ I, which is not nilpotent. We consider the trivial norm

‖ · ‖, since W has unity. Then, for any natural n,

1 = ‖xn‖,

‖x‖n = 1n = 1

and so ‖x‖n = ‖xn‖. Hence A ∈ HCW and A ∈ UCW
(HCW ) ∩ HCW = 0; a

contradiction. ¤

Let Q denote the Brown-McCoy radical; that is, the upper radical generated by

all simple ring with unity.

Theorem 9. Let U be a universal subclass of Ass. Then UCW
(C ′

W ) = Q ∩ CW ,

where C ′
W is the class of all simple rings with unity, in CW .

Proof. UCW
(C ′

W ) ⊆ Q ∩ CW : Let A ∈ UCW
(C ′

W ). Clearly, A ∈ CW , and

it remains to show that A ∈ Q. If A 6∈ Q, then A has a nonzero homomorphic

image A such that A is a simple ring with unity. Since A ∈ CW , by Proposition 1,

A ∈ CW , and also A ∈ C ′
W . Therefore A ∈ UCW

(C ′
W ) ∩ C ′

W = 0; a contradiction.

We claim that Q ∩ CW ⊆ UCW
(C ′

W ). Let A ∈ Q ∩ CW and suppose A 6∈ UCW
(C ′

W ).

Since A ∈ CW , A has a nonzero homomorphic image A in C ′
W . Thus A 6∈ Q; a

contradiction. ¤

We consider the rings CS in Example (i), and also the Thierrin radical γt in Ass,
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which is the upper radical of all fields. Clearly, every ring A ∈ S(γt) is a subdirect

sum of fields.

Proposition 10. If CS is normed in a linearly ordered ring W , then CS and

l∞(S) are γt ∩ CW -semisimple and also suddirect sums of fields normed in W . (For

example, CS and l∞(S) are normed rings in R).

Proof. Let f ∈ CS and put

g(x) =





0, if f(x) 6= 0

1 if f(x) = 0
.

Then g ∈ CS . Since CS is a commutative ring, f(x)CSg(x) = f(x)g(x)CS = 0. Thus

CS is not a prime ring and hence CS is not a simple ring. Now we shall prove that

every nonzero ideal I of CS has an idempotent. Let 0 6= f ∈ I C CS . Suppose that

g(x) =





1
f(x) , if f(x) 6= 0

0 if f(x) = 0
.

Then

e(x) = f(x)g(x) =





1, if f(x) 6= 0

0 if f(x) = 0
.

Since I is an ideal of CS , e ∈ I and e2 = (fg)2 = e and thus I has an idempotent

element. CS is a subdirect sum of subdirectly irreducible rings CS/Ji with hearts Ii

having an idempotent, where Ii = Ii/Ji for some IiCCS . Since Ii has an idempotent

element, Ii is a simple ring. Since simple commutative rings are fields, Ii are fields.

Thus CS/Ji ≡ Ii. and CS is a subdirect sum of fields.

The proof of the case l∞(S) is similar. ¤
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